
REGIOSELECTIVE CONJUGATE ADDITION OF SULFONYLALLYL CARBANIONS TO α , β -unsaturated ketones

Masahiro Hirama Suntory Institute for Bioorganic Research Shimamoto-cho, Mishima-gun, Osaka 618, Japan

<u>Summary</u>: Ambident lithium carbanions of allyl phenyl sulfones add $1,4-\alpha$ to both acyclic and cyclic enones exclusively if HMPA is present in the medium; in contrast, $1,2-\alpha$ addition to cyclic enone is the major kinetic course in the absence of HMPA, which is followed by rearrangement to the $1,4-\gamma$ adduct.

Two aspects in regioselectivity come into play simultaneously when conjugated enones are reacted with the ambident nucleophile, sulfonylallyl carbanion.¹ Namely, these are the problems of 1,2- or 1,4-addition² to the enone, and α - or γ -substitution³ of the carbanion. For instance, the conjugate addition of n-butyllithium-generated allyl sulfone anions to enones was reported recently, but the regioselectivity was opposite between 2-cyclohexenone(1,4- γ) and 3-penten-2-one(1,4- α).⁴ During the course of a synthetic project, it became necessary to develop conditions which would lead to selective 1,4- α conjugate additions. Exploratory studies have led to the finding that clean 1,4- α additions to both acyclic and cyclic enones can be realized when the lithium carbanions(1 mol) are reacted in the presence of 2 mol of hexamethylphosphoramide(HMPA) at -78 °C.

The results of the reaction of $allyl(\underline{1a})$, β -methallyl($\underline{1b}$) and prenyl phenyl

sulfone	enone	l,4-α adduct	% yield
<u>la</u>	<u><u><u></u><u></u><u></u><u></u><u>2a</u></u></u>	$\bigcup_{Q}^{O} \bigcup_{SO_2^{Ph}} \underline{3a}$	89
<u>la</u>		$\bigcup_{O} SO_2^{Ph} \xrightarrow{3b}$	94
<u>la</u>	0 2 <u>c</u>	$\bigcap_{\substack{0\\ 0\\ \end{array}}}^{0} \sum_{\substack{SO_2^{Ph}}}^{3c}$	70
<u>la</u>		$\bigcup_{0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	71
<u>1b</u>	<u>2a</u>	<u>3e</u>	91
lb	<u>2b</u>	$\bigcap_{0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	79
lc	<u>2a</u>	SO ₂ Ph 3g	76

Table 1. 1,4- α Addition of Sulfonylallyl Carbanions to Enones.

sulfones(<u>1c</u>) with several enones(<u>2a-2d</u>) are shown in Table 1.⁵ All yields quoted are those of chromatographically isolated products. This rapid and exclusive 1,4- α addition of lithium anion of <u>la</u> to <u>2a</u> was found to be complete within 2 min.⁶ It is also noteworthy that, in contrast to the recent observation,⁴ smooth additions took place even with β , β -disubstituted substrates such as <u>2c</u> and <u>2d</u>.

On the other hand, when the reaction is carried out in THF at -78 °C in the absence of HMPA, the lithium anion of <u>la</u> reacts with <u>2a</u> to give the 1,2- α adduct (<u>4</u>) as the major kinetic product, which in turn is transformed mainly to the 1,4- γ adduct(<u>5</u>), slowly at -78 °C or quickly at 0 °C(Table 2^{5a}). The thermodynamically controlled formation of 1,4- γ adduct(<u>5</u>) from 1,2- α one(<u>4</u>) was confirmed by the treatment of isolated <u>4</u> with n-butyllithium at -78 °C in THF, followed by warming to 0 °C for 40 min; this afforded <u>5</u>⁷ and <u>3a</u> in yields of 83% and 17%, respectively.

<u>la</u>	1) n-BuLi THF,-78 °C 2) $2a$ 3) H ⁺ $4/(1,2-\alpha)$	0 5 (1,4-		^{2^{Ph} +}	$\bigcup_{\substack{3a\\ ,4-\alpha}}^{0} \bigcup_{SO_2^{Ph}}$
reaction condition		rati	ratio of products		total yield
		<u>4</u>	: <u>5</u>	: <u>3a</u>	ę
-78 °C,	2.5 min	69	22	8	95
-78 °C,	78 °C, 10 min		27	8	100
-78 °C,	50 min	43	46	11	89
-78 °C,	78 °C, 10 min → 0 °C, 40 min		83	17	81
-78 °C,	10 min \rightarrow with HMPA(2 equiv.)				
	-78 °C, 40 min	14	44	42	75

Table 2. Product Distribution as a Function of Reaction Time, Temperature and Additive(HMPA) in the Reaction of Anion of <u>la</u> with <u>2a</u> in THF.

However, a considerable amount of $1,4-\alpha(\underline{3a})$ was produced, in addition to $1,4-\gamma(\underline{5})$ and recovered $\underline{4}$, when 2 equiv. of HMPA was added to the reaction mixture at -78 °C, 10 min after the addition of $\underline{2a}$ to the anion of $\underline{1a}$, and subsequent maintenance of the mixture at the same temperature for 40 min(Table 2). This HMPA-induced transformation of $\underline{4}$ to $\underline{3a}$ was also demonstrated by treating isolated $\underline{4}$ with n-butyllithium in THF-HMPA(2 equiv.) at -78 °C for 40 min; this afforded $\underline{3a}$ in 73% yield, but in both cases, 14% and 25% respectively, of unreacted $\underline{4}$ was still present. Therefore, it can be concluded that the rapid and highly regioselective formation of $1,4-\alpha$ adduct in the THF-HMPA(2 equiv.) system shown in Table 1 results from a direct conjugate addition rather than a kinetically controlled $1,2-\alpha$ addition and subsequent rearrangement.

The HMPA-induced control of regioselectivity leading to $1,4-\alpha$ adducts is currently being utilized in syntheses of carbocyclic natural products.

A typical experimental procedure(Table 1) is as follows. To a solution of 182 mg(1.0 mmol) of <u>la</u> and 0.348 ml(2.0 mmol) of HMPA in 4.0 ml of dry THF was dropwise added 0.70 ml(1.0 mmol) of 1.43 M n-butyllithium in hexane at -78 °C under N₂ and the mixture was stirred at the same temperature for 10 min. To the deep yellow solution was quickly added 0.116 ml(1.2 mmol) of <u>2a</u> at -78 °C. Addition of <u>2a</u> resulted in a rapid discharge of the color. After 30 min at -78 °C, the mixture was quenched by the addition of 0.070 ml of acetic acid and then saturated aqueous NH₄Cl was added at -78 °C. The mixture was allowed to warm to room temperature and extracted with ether. The organic phase was dried over anhydrous MgSO₄ and evaporated. The crude product was purified by silica gel column chromatography(hexane/ether = 1/1) to yield 247 mg(89% yield from <u>la</u>) of <u>3a</u> as a colorless solid mixture of racemic diastereoisomers.

Acknowledgment. The author is grateful to Professor K. Nakanishi, Director of the Institute, for his generous support and advice.

References and Notes

- For the versatility of allyl sulfones as synthetic intermediates, see:
 B. M. Trost, N. R. Schmuff and M. J. Miller, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 5979(1980) and references cited threrin.
- For regioselective 1,4-addition of acyl anion equivalents, see: P. C. Ostrowski and V. V. Kane, <u>Tetrahedron Lett.</u>, 3549(1977); C. A. Brown and A. Yamaichi, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 100(1979); J. Lucchetti, W. Dumont and A. Krief, <u>Tetrahedron Lett.</u>, 2695(1979).
- 3) For regioselectivity in the reactions of ambident nucleophiles, see: D. Seyferth, G. J. Murphy and B. Mauzé, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 5317(1977);
 Y. Yamamoto, H. Yatagai and K. Maruyama, <u>J. Org. Chem.</u>, <u>45</u>, 195(1980);
 F. E. Ziegler and C. Chan Tam, <u>Tetrahedron Lett.</u>, 4717(1979).
- 4) G. A. Kraus and K. Frazier, Synth. Commun., <u>8</u>, 483(1978).
- 5) (a) All new compounds were fully characterized by NMR(360 MHz), IR and MS (high resolution).
 - (b) The 1,4- α adducts are the mixtures of racemic diastereoisomers, the ratios of which were determined by 360 MHz ¹H-NMR as follows: <u>3a</u>(3:1), <u>3b</u>(3:1), <u>3d</u>(3:1), <u>3e</u>(3:1), <u>3f</u>(2:2:1), <u>3g</u>(2:1).
- 6) A very small amount of two other isomers was detected in the reaction mixture by 360 MHz ¹H-NMR; namely, peak intensities led to a ratio of 97:2:1 for $1,4-\alpha(\underline{3a}):1,4-\gamma(\underline{5}):1,2-\alpha(\underline{4})$.
- 7) Although oxy-Cope rearrangements of lithium alkoxides are normally slow [see, D. A. Evans and A. M. Golob, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 4765(1975)], it is conceivable that the transformation of <u>4</u> into <u>5</u> is accelerated by the sulfone group.

(Received in Japan 31 January 1981)

۱

1908